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Hi Everyone!

Thank you all for attending this talk.

We are sorry that we couldn’t attend the conference in person. 

We have uploaded a PDF copy of the slide in the link you see here. It also includes a transcript of the audio recording. 

 
Today, I want to talk about our work with middle school science students where we explored the possibility of integrating computational thinking or CT in existing science 
classes. 


In particular, I will talk about the value afforded by computing systems to create multiple representations of a science phenomenon that we believe can help students dive 
deeper into learning abstraction and, more critically, learning through abstraction.
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Contextualized Introduction
• Educational computing has always been about ideas: 


• Papert’s “objects to think with”: LOGO, StarLogo, 
NetLogo 


• diSessa’s work on Boxer: “computational literacy”


• Critical value: contextualized introduction e.g. CS+X


• CT is different from dedicated CS education (Wing, 2006; 
Cuny et al., 2010).


• Exploring ideas, not just programming
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Educational computing has always been about ideas. 


These build on theories from Bruner and Piaget and was brought to the forefront by Seymore Papert, who saw possibility of computers to be “objects to think with”. 


We see the influence of computing as a tool to explore ideas in a line of systems such as Logo, StarLogo, and NetLogo, which is what we used in this project.


Related to that, Andy diSessa introduced Boxer, a system that facilitated learning important ideas of physics as well as computation.


In all of the work, we find that the critical value is in providing meaningful context for the students to encounter computing. 


Such contextualized introduction have been argued for in teaching practices such as Guzdial, Ericson’s Media Computation, Caitlin Kelleher’s Story-telling Alice, and 
Dennis Kafura and team’s Blockpy system at Virginia Tech. 


I believe that this value that is very well reflected in this “CS + X” session as well. 


Computational thinking, or CT, is well aligned to this idea of contextualized introduction. 


CT is about exploring ideas through a computational medium.

 

Although critical ideas can be captured in programming exercises, CT is much broader than that. 



Integration of CT  
in Existing Class

• Pragmatic reasons: time in curriculum, reaching all students


• As a way of seeing and thinking about an increasingly 
computation-embedded world


• Computing to learn varied concepts 


• Including to learn computation itself


• Possibility for synergistic learning gains


• Finding elements of alignments between domains
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In our project, we have tried to integrate CT into existing middle school science classes. 


There are pragmatic reasons to do so. 

There is limited room in an already overloaded K-12 curriculum to add dedicated computing class. 

Also, many schools have a shortage of teachers and resources to teach dedicated computing classes. 


Given that computing skills are increasingly becoming central in the modern workforce, there is a risk of widening inequity if we cannot provide students with rich learning 
environments that provides them with  opportunities to learn fundamental concepts of computing.

Integrating CT can provide opportunities to students to see and think about an increasingly computation-embedded world.

This goes back to diSessa’s argument for computational literacy, that is, computing is an infrastructure to understand concepts of varied subjects including computation 
itself. 


Also, from a learning science perspective, integrating CT into classes can open possibilities for deeper engagement and lead to synergistic learning gains. 

The key is to find elements of alignment between CT and the domain in which CT is integrated. 




Our Approach: Integrate CT  
in Science Class

Abstraction is central in both science and CT
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In our integrated approach where we brought CT into existing science classes, we find that Abstraction is one such common element in both the domains. 

It is the focus of this work. 



Abstraction in Computing
• Typically begins with a hierarchical 

perspective


• Extract important features


• Ignore unimportant features


• Find commonalities across contexts 


• Lateral movements between concepts 
or actions are more advanced


• E.g. abstract data types: operations 
and constraints
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Let’s unpack abstraction a little bit. 


When we introduce abstraction to students in computer science, we typically begin by presenting it as a hierarchy. 

The key skills that students encounter is to extract important feature, ignore unimportant ones, and find commonalities across contexts. 


A simple example of this is the way we think about computing systems in general. 

At the lowest level, we have the electronic states which can be on or off. 

Moving up the ladder of abstraction, we represent those states in a binary form — 0s and 1s. 

A further level above that, one can choose to represent it in a decimal system. For example, in the image that you see here, the binary number 01000001 can be 
represented as the decimal “065”. 

A level above that, we can choose to take the decimal number as a representation of text. In this case, “065” can translate to the letter “A” if we follow ASCII encoding. 

The takeway from here is that very rarely, beginners when working with text letter A have to think about the electronic states or the binary states.


Beginners are not introduced to the lateral hierarchy such as abstract data types, and the operations and constraints that come with it. 

These are more advanced concepts in computing. 




Abstraction in Science
• From the start, it requires lateral movements 
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• Why can’t it be: H2O ⇋ H2 +  O? 

Whereas, when we look at abstraction practices in science, we find that students need to think about lateral movements right from the start.


Consider a simple chemical equation like the electrolysis of water where the equation is written as 2H20 -> 2H2 + O2 i.e. 2 water molecules split into 2 hydrogen 
molecules and 1 oxygen molecule. 


The equation itself is represented at a molecular level. 

We can move down a level and notice atomic elements too. In this case, there are 4 hydrogen atoms and 2 oxygen atoms in the left side, or the reactant side. 

The law of conservation of matter dictates that the product side should also have the same number of atoms in the product side, or the right side. 


But that concept alone is not enough.

For example, one, equipped with the conservation of matter can ask why can’t the equation be  H2O —> H2 + O. There are equal number of atoms in both sides here 
too! 


However, the thing with the chemical equation is that it represents several implicit aspects of chemical phenomena. 

In this case, it is important for students to understand energetic states and draw upon the fact that hydrogen and oxygen are diatomic, that is, they typically existing with 
two atoms together.

That is, H2 and O2. 

This understanding is essential to be able to grasp the molecular level equation. 

Students need to move laterally right from the start to understand the representations typically used in science. 



Multiple Representations
• Representing the natural carbon cycle
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Middle school students from Texas and Virginia participated in our study. 

In the paper, we report observations from one class of 21 7th grade students. 


In the unit students encountered multiple representation of the natural carbon cycle. 




Multiple Representations

1. Physical macroscopic phenomena 
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They began with a simulation of the view that they were quite familiar with. 

The simulation showed cows grazing on grass under a bright sunlight. 




Multiple Representations

1. Physical macroscopic phenomena 


2. Standard scientific representation
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After the simulation, the instructor led a discussion where the class encountered scientific representation of the phenomenon.

This included chemical equations. 



Multiple Representations

1. Physical macroscopic phenomena 


2. Standard scientific representation


3. Simulation: included microscopic phenomena overlaid 
on the macroscopic view
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Following the discussion, students were encouraged to explore the simulation further. 

But this time around, they explored a feature that we had built where microscopic representations of molecules were overlaid on the macroscopic view. 

In the figure above you can see carbon dioxide molecules in the atmosphere, glucose molecules in the plants and inside the cow. 



1. Physical macroscopic phenomena 


2. Standard scientific representation


3. Simulation: included microscopic phenomena overlaid 
on the macroscopic view

Multiple Representations
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1. Physical macroscopic phenomena 


2. Standard scientific representation


3. Simulation: included microscopic phenomena overlaid 
on the macroscopic view


4. Modifiable code-based representations using NetLogo

Multiple Representations
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The students were then introduced to parts of the code that implemented the simulation.

An example of the code can be seen here where we implement the plant’s photosynthesis process. 


The introduction was heavily scaffolded with the help of the instructor. 

We had written the code in a way to scaffold the encounter as well, some of which do not necessarily follow typical software engineering guidelines. 

The code was verbose, repetitive so as to facilitate easy exploration and navigation, and ordered to make it easier for students to get a higher-level understanding of the 
science before diving deeper into the computational mechanics behind it.

In that sense, we prioritized learning science over writing efficient programs. 




1. Physical macroscopic phenomena 


2. Standard scientific representation


3. Simulation: included microscopic phenomena overlaid 
on the macroscopic view


4. Modifiable code-based representations using NetLogo

Multiple Representations

13

It is worth noting here that the computing representations were interactive and highly modifiable, and students were encouraged to explore and modify the 
representations. 



Science Representation
• Observed gaps in students’ knowledge


• E.g. we asked if H2 + O2 = H2O was balanced  
 
 

• Students understood conservation of mass


• But not other implicit aspects represented in the equation 
about atoms, molecules, and stable energetic states
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“… it should be H2 + O = H2O”“… that would be H2O2”

In the class, we observed that there were gaps in the students’ knowledge. 


For example, we had asked students if H2  + O2 equals to H2O was a balanced equation or not. 

11 out of the 19 students who responded correctly mentioned that the equation violated the law of conservation of matter. 

However, 8 of the 11 struggled to balance the equation correctly saying things like “that would be H2O2” or “it should be H2 + O = H2O”. 


It became clear that while students were familiar with the principle of conservation of matter, they had not imbibed the concepts of energetic states and molecular 
structure that is implicitly summarized in the chemical equation. 



Encountering Code 
Representation

• The code made implicit abstraction in science more 
explicit


• When asked to interpret the code implementing 
photosynthesis, some groups read it statement-by-
statement


• Interpreting code without embodying the science:


• “the water-level is minus six”
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The implicit aspects of the equation became explicit when the students worked on the code. 

 
Code requires statements that explicitly mention the change in state. This transformation is implicitly when students encounter chemical equation. 


What we observed was that students were not able to draw from their science understanding to make sense of the explicit code statement.

That is, they were not able to move laterally. 


For example, when a group of students when exploring the photosynthesis function encountered the statement “set plant-water-level plant-water-level - 6”, they 
grappled with the mechanics of the statement 

The group interpreted it simply as “the water-level minus six” which is the notion associated with the abstraction common in computing. 

They could not see the science embodied in the statement. 



Encountering Science 
Through Code

• As the activity progressed, the students built upon their 
understanding of science and the code:

“the water level goes down six” 

“takes water from the plant”

“… because we are talking about, 
like, the photosynthesis process …”

As the sessions progress, with the instructor’s scaffolds, the students began to increasingly connect the science concepts with the code representation. 


For the same group, we saw a movement where they increasingly saw the science where they moved from “the water level goes down six” to seeing that it represents 
taking of water from the plants to eventually seeing the entire code as a unit to represent photosynthesis. 


The students moved laterally between representations, connecting via abstraction-based thoughts to develop new understanding. 




CT    Science
• Learning-to Abstract
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• Learning-through-abstraction 

+

6CO2 + 6H2O    C6H12O6 + 6O2

Photosynthesis

Learning-to-read Reading-to-learn

To summarize, in computing, we want students to learn to abstract. 

We see this in programming exercises such as generalizing class structures, and thinking about class relations. 


What we find in our study is that when students encounter multiple representations

Such as a macroscopic representation of the thing that they have seen in their day-to-day life 

Which is then explained through a standard scientific representation

and engagement with it deepened further by presenting modifiable and interaction representation through computers, 

students have to move laterally across representation, 

abstract key features from it,

and build upon their understand to make sense of the new representations. 

This is what we saw when the students moved from the mechanics of the code to realize the embodied science in the code.

That is, students learned through the abstraction. 


These two differences are analogous to how students begin by learning to read and then progress where they start reading to learn. 

Here too, we argue that the students learn to abstract, but we can provide scaffolds to move students further to learn through abstraction. 


This, in sum, is what we argue in the paper. 



Need for Careful 
Consideration

• Seeing code as being part of a single unit


• Procedural abstraction: modularizing and reusing


• But it may not necessarily always work hand in hand:


• Focus on hierarchies may not create encounters with 
lateral abstraction


• Focus only on lateral abstraction may not suffice to 
learn about hierarchies 
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Seeing the code as being part of a single unit requires lateral movements.

From a computing perspective, this is part of procedural abstraction, critical to practices like modularizing and reusing. 


But this may not necessarily work hand in hand.

Focusing on hierarchies does not necessarily create encounters with lateral abstraction as we discussed with the binary-decimal-text example earlier. 

But similarly, focusing on lateral abstraction alone may not be sufficient for the students to grasp ideas of hierarchical abstraction. 

This, we believe is a limitation which requires further exploration.




Recommendations

1. Present multiple representations in context


2. Follow pedagogical goals while making representational 
choices


3. Order the encounter of the representations


4. Ensure cross-representational coherence


5. Allow friction during encounters with representations
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Reflecting on our experience, we recommend the following to promote students’ deep engagement with abstraction and learning through abstraction.




Recommendations
1. Present multiple representations in context


• Support student to see that a phenomenon can be 
expressed in multiple ways


• Encourage transitions between those representations


2. Follow pedagogical goals while making representational choices 
3. Order the encounter of the representations 
4. Ensure cross-representational coherence 
5. Allow friction during encounters with representations
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First, we believe that presenting the multiple representation in context was beneficial for students to move between the representation and draw upon their 
understanding. 

The students were familiar with some of the aspects and the familiarity supported in seeing how it could be expressed in different ways. 



Recommendations
1. Present multiple representations in context 

2. Follow pedagogical goals while making representational 
choices


• Instructors are critical


• The photosynthesis function emphasized the 
pedagogical point that the instructor wanted to make


3. Order the encounter of the representations 
4. Ensure cross-representational coherence 
5. Allow friction during encounters with representations
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Technology is a tool that can facilitate the teaching process but can do so only if the instructors find it to be of value in furthering their pedagogical practice. 

For example, the photosynthesis function emphasized exactly the pedagogical point that the instructor wanted to make and that afforded opportunity for the instructor to 
scaffold students’ encounter with the representation. 



Recommendations
1. Present multiple representations in context 
2. Follow pedagogical goals while making representational choices 

3. Order the encounter of the representations


• Presenting the simulation before the code-based model 
helped contextualize the students’ encounter (e.g. 
Ainsworth, 2008) 

4. Ensure cross-representational coherence 
5. Allow friction during encounters with representations

22

Third, we believe that it is critical to order the students’ encounter with the different representations.

Beginning from representations that they were familiar with allowed them to draw upon their understanding when they encounter newer representations. 

The need for ordering representations has been argued in prior learning science literature particularly in the brilliant work by Shaaron Ainsworth. 



Recommendations
1. Present multiple representations in context 
2. Follow pedagogical goals while making representational choices 
3. Order the encounter of the representations 

4. Ensure cross-representational coherence


• Coherency in representations facilitate transition


• Helps in seeing the similarities and differences


5. Allow friction during encounters with representations
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Related to the ordering, we believe that ensuring that the representations were coherent helped students to transition between representations. 

The students were able to see the similarity and notice the differences that arose in a new representation.

For example, students were able to connect the overlaid representation of the glucose molecule to the plant-glucose-level in the code. 



Recommendations
1. Present multiple representations in context 
2. Follow pedagogical goals while making representational choices 
3. Order the encounter of the representations 
4. Ensure cross-representational coherence 

5. Allow friction during encounters with representations


• Friction arose upon encountering the difference in the 
implicit and explicit aspects of each representation


• Encourages students to draw upon their understanding 
to negotiate elements with one another
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Finally, we argue that there is a need to allow for friction to occur in the students’ discussions when they encounter different representations. 

This was most prominently seen when the students encountered things that were implicit in the equation being presented explicitly in the code. 

Building on the importance of students’ struggle in learning concepts, such as Piaget’s assimilation and accommodation, we believe that the friction encouraged student 
to draw upon their understanding of the phenomenon from other representations and negotiate it with the elements in the new one they encountered. 




Broader Implications

• Focusing on learning-through-abstraction reemphasizes:


1. Meaningful context to introduce computing


2. Present computing as a tool to engage with other 
domains
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We argue that focusing on learning-through-abstraction promotes deeper engagement with both the critical idea within computing as well as the domain knowledge. 

More broadly, the focus on learning-through-abstraction reemphasizes the need for students to be introduced to computing through meaningful context.

Further, it emphasizes the value of computing as a tool, one that promotes deep engagement with the ideas in other domains. 



Thank you!

Carefully contextualizing multiple representations as 
part of the existing pedagogical practice can 
encourage students to learn-through-abstraction and 
promote deeper engagement with both the 
computational concepts as well as the domain 
knowledge. 
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In sum:

 @gautamaakash

 aakashg@vt.edu

We are sad that the couldn’t be there to answer questions or take this discussion further but please feel free to send us an email to continue the conversation. 


Thank you! 



